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ABSTRACT

We investigate the role of anisotropic feature extraction
methods for automatic image registration of remotely
sensed multitemporal images. Building on the classi-
cal use of wavelets in image registration, we develop an
algorithm based on shearlets, a mathematical general-
ization of wavelets that offers increased directional sen-
sitivity. Experimental results on multitemporal Land-
sat images are presented, which indicate superior per-
formance of the shearlet algorithm when compared to
classical wavelet algorithms.

Index Terms— Image registration, shearlets, wavelets,
multitemporal images, Landsat.

1 INTRODUCTION
The problem of accurately and robustly registering mul-
titemporal image data is a significant problem in the
field of remote sensing. Images of the same scene,
captured by the same sensor, can have severe misalign-
ment if taken at different times. This can be due to
seasonal changes, cloud coverage, and differences in
sensor placement. In order to register two such scenes,
techniques developed from the mathematical discipline
of harmonic analysis have been successful.

In particular, methods based on wavelets have been
effectively applied to the problem of registering multi-
temporal, remotely-sensed images [1]. By decompos-
ing an image according to a discrete wavelet algorithm,
an image is reduced to more essential features, which
are easier to match. It is well-known that wavelets cap-
ture certain features of an image, such as textures, quite
well. Their simple and fast implementation through a
variety of filter schemes has also contributed to the suc-
cess of wavelets and related algorithms, such as Simon-
celli steerable filters [2].

However, wavelets are known to be isotropic, mean-
ing they do not effectively represent images that have di-

rectional features. This theoretical limitation to wavelets
has been known since the beginning of their study [3],
and puts limitations on their effectiveness in analyzing
certain image classes. In particular, images with strong
edge-like features, including rivers, roads, and moun-
tains, are not optimally represented with wavelet-like al-
gorithms.

Anisotropic generalizations of wavelets abound.
In particular, shearlets [4], [5] give a fast, optimized,
and directionally-dependent decomposition of images,
which we shall show yield a robust algorithm for the
registration of multitemporal images.

2 BACKGROUND ON WAVELETS AND SHEAR-
LETS

In a broad sense, wavelet algorithms decompose an im-
age with respect to scale and translation. Mathemati-
cally, for a signal f ∈ L2([0,1]2), understood as an ideal
image signal, and an appropriately chosen wavelet func-
tion ψ, f may be decomposed as

f ∼
∞

∑
m=−∞

∑
n∈Z2

〈 f ,ψm,n〉ψm,n,

where:

• ψm,n(x) = 2
m
2 ψ(Amx−n),

• A =

(
2 0
0 2

)
.

The collection of wavelet coefficients {〈 f ,ψm,n〉}m∈Z,n∈Z2

describes the behavior of f , our image signal, at differ-
ent scales (determined by m) and at different transla-
tions (determined by n). This continuous scheme is
discretized to work with real, discrete image signals.

Shearlets generalize wavelets by decomposing with
respect not just to scale and translation, but also direc-
tion. Mathematically, given a signal f ∈ L2([0,1]2) and
an appropriate base function ψ, we may decompose f as
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f ∼
∞

∑
i=−∞

∞

∑
j=−∞

∑
k∈Z2

〈 f ,ψi, j,k〉ψi, j,k,

where:

• ψi, j,k(x) = 2
3i
4 ψ(B jAix− k),

• A =

(
2 0
0 2

1
2

)
, B =

(
1 1
0 1

)
.

The matrix A is now anisotropic, which will priori-
tize certain directions. The new matrix B is a shearing
matrix, and it determines this prioritized direction. The
shearlet coefficients {〈 f ,ψi, j,k〉}i, j∈Z,k∈Z2 describe the
behavior of f at different scales (determined by i), trans-
lations (determined by k) and directions (determined by
j). Shearlets have been successfully deployed for image
denoising [6] and superresolution of remotely sensed
data [7].

The role of shearlets in automatic image registra-
tion can be understood heuristically as follows: shear-
lets produce sparse, concentrated, and directional fea-
tures in images, which give the optimization algorithm
used for image registration sparse, concentrated features
with which to match.

We hypothesized these sparse, concentrated features
would allow us to register multitemporal images that be-
gin severely misaligned. More precisely, we hypothe-
sized the sparsity of our shearlet features would produce
a more robust registration algorithm, compared to one
based on classical wavelets. Experimental results con-
firming this heuristic argument are discussed in Section
4.

3 REGISTRATION ALGORITHM DESIGN
Our image registration algorithm is based on decompos-
ing the input and reference images using harmonic anal-
ysis tools. Our ambition is to compare isotropic wavelet-
like methods to an anisotropic generalization, shearlets.
To do so, we consider wavelet-like algorithms in the
form of spline wavelets and Simoncelli steerable pyra-
mids [8], and the fast finite shearlet transform (FFST)
[9]. These features are then matched using a non-linear
least squares optimization algorithm, in order to com-
pute the registration transformation between the images.

We summarize our image registration algorithm in
terms of the four components of image registration de-
scribed by Brown [10]:

1. Search Space: Rotation and translation (RT).

2. Features: Wavelet features in one case and shear-
let features in another.

3. Similarity Metric: Unconstrained least squares.
That is, if FR and FI are the reference and input
features, N the number of relevant pixels, (xi,yi)
the integer coordinate of the ith pixel, and Tp the
transformation associated to parameters registra-
tion p, we seek to minimize the similarity metric
given by:

χ
2(p) =

1
N

N

∑
i=1

(FR(Tp(xi,yi))−FI(xi,yi))
2 .

4. Search Strategy: Modified Marquadt-Levenberg
method of solving non-linear least squares prob-
lems [11], [12].

4 EXPERIMENTAL RESULTS
To test our wavelet and shearlet algorithms, we reg-
istered multitemporal images produced by Landsat-7
ETM+ and Landsat-5 TM sensors. These images are
of the Chesapeake Bay (eastern USA) and have been
processed by USGS EROS Data Center, by removing
artifacts and resampling. The Landsat-7 ETM+ image
was captured in 1999 and the Landsat-5 TM image was
captured in 1997. The images may be seen in Fig-
ure 1. Notice the large displacement between the two
images. Indeed, using ENVI software tools, manual
registration was performed on the images to compute
an RT transformation between them. The manual reg-
istration parameters are: (Tx,Ty,θ) = (103.2,−8.1,0).
This means to recover the reference image from input
image, one must translate the input image 103.2 pixels
to the right (positive x direction) and 8.1 pixels down
(negative y direction), with no rotation required. This is
an exceptionally large translation in the x direction, so
this image pair constitutes a severe misalignment.

We performed automatic image registration with
wavelet-like features and shearlet features, and com-
pared the results to this manual registration. Our goal
was to study the robustness of the registration algo-
rithms, and in particular, whether using anisotropic
shearlet features improved robustness, when compared
to isotropic wavelet features. To evaluate the robustness
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Fig. 1. Input (top) and reference (bottom) multitemporal
images. The images are 256× 256 scenes from band 4
of a Landsat-7 ETM+ and Landsat-5 TM, respectively.

of our algorithms, we allowed the initial guess of the
registration, denoted (Tx0 ,Ty0 ,θ0), to increase towards
the truth registration. By starting far away and moving
towards the correct registration, we analyze how far the
initial guess could be from the truth registration and still
acquire accurate registration. A more robust algorithm
will allow for a poorer initial guess, while still retain-
ing accurate registration. The results of our registration
experiments may be seen in Tables 1, 2, 3, 4.

Tables 1 and 2 indicate the superior robustness of
shearlets when compared to spline wavelets or Simon-
celli band-pass features. Table 3 is ambiguous as to
which of shearlets or Simoncelli low-pass is more ro-

(Tx0 ,Ty0 ,θ0) Spline Wavelets Shearlets

(0,0,0) (-1.5, 1.1, -2.4) (-.1, .3, .1)
(10, -1, 0) (10.2, -.6, .1) (62.6, 33.1, 8.54)
(20, -2, 0) (18.4, -1.8, -1.0) (64.8, 30.3, .1)
(30, -3, 0) (29.6, -2.7, -.2) (103.6, -8.2, .1)
(40, -4, 0) (39.3, -4.5, -1.3) (103.6, -8.2, .1)
(50, -5, 0) (39.3, 4.0, -1.3) (103.6, -8.2, .1)
(60, -6, 0) (62.9, -1.0, -.1) (103.6, -8.2, .1)
(70, -7, 0) (70.9, -.2, -1.2) (103.6, -8.2, .1)
(80, -8, 0) (103.5, -8.0, 0) (103.6, -8.2, .1)
(90, -9, 0) (103.5, -8.0, 0) (103.6, -8.2, .1)

(100, -10, 0) (103.5, -8.0, 0) (103.6, -8.2, .1)

Table 1. Comparison of spline wavelets to shearlets. Bold
entries indicate convergent registrations. The spline wavelets
algorithm begins to converge at (80,−8,0), the shearlets al-
gorithm at (30,−3,0).

bust for these multitemporal images, but more refined
choices of initial guesses in Table 4 indicate the superior
robustness of shearlets in this case as well.

5 CONCLUSIONS
In our experiments, shearlet-based registration outper-
formed wavelet-based registration in terms of algorithm
robustness. When compared to spline wavelets and Si-
moncelli band-pass filters, shearlet features provide an
overwhelmingly more robust method for registration, al-
lowing a far poorer initial registration guess. Indeed,
shearlet features allow for an initial guess that is at least
twice as poor in terms of distance from the truth regis-
tration. Simoncelli low-pass features are more compara-
ble to shearlets, but shearlets are slightly superior in this
case as well.

It is of interest to test this method on additional mul-
titemporal images, including those with radically differ-
ent image content, such as varied cloud coverage.
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